第262頁
(三)生物分子自然交聯學說
其主要論點是:機體中蛋白質,核酸等大分子可以通過共價交叉結合,形成巨大分子。這些巨大分子難以酶解,堆積在細胞內,干擾細胞的正常功能。這種交聯反應可發生於細胞核dna上,也可以發生在細胞外的蛋白膠原纖維中。目前有一些證據支持交聯學說。皮膚膠原的可提取性以及膠原酶對其消化作用隨增齡降低,而其熱穩定性和抗張強度則隨年齡的增高而增強了;大鼠尾腱上的條紋數目及所具備的熱收縮力隨年齡的增高而增加,溶解度卻隨年齡增高而降低。這些結果表明,在年老時膠原的多肽鏈發生了交聯,並日益增多。該學說與自由基學說有類似之處,亦不能說明衰老發生的根本機制。生物分子自然交聯學說:該學說在論證生物體衰老的分子機制時指出:生物體是一個不穩定的化學體系,屬於耗散結構。體系中各種生物分子具有大量的活潑基團,它們必然相互作用發生化學反應使生物分子緩慢交聯以趨向化學活性的穩定。隨著時間的推移,交聯程度不斷增加,生物分子的活潑基團不斷消耗減少,原有的分子結構逐漸改變,這些變化的積累會使生物組織逐漸出現衰老現象。生物分子或基因的這些變化一方面會表現出不同活性甚至作用徹底改變的基因產物,另一方面還會干擾rna聚合酶的識別結合,從而影響轉錄活性,表現出基因的轉錄活性有次序地逐漸喪失,促使細胞、組織發生進行性和規律性的表型變化乃至衰老死亡。生物分子自然交聯說論證生物衰老的分子機制的基本論點可歸納如下:其一,各種生物分子不是一成不變的,而是隨著時間推移按一定自然模式發生進行性自然交聯。其二,進行性自然交聯使生物分子緩慢聯結,分子間鍵能不斷增加,逐漸高分子化,溶解度和膨潤能力逐漸降低和喪失,其表型特徵是細胞和組織出現老態。其三,進行性自然交聯導致基因的有序失活,使細胞按特定模式生長分化,使生物體表現出程序化和模式化生長、發育、衰老以至死亡的動態變化歷程。隨年齡增長,對生命重要的大分子有交聯增多傾向,或在同種分子間或在不同分子間都可能產生交聯鍵從而改變了分子理化特性,使之不能正常發揮功能。細胞外的膠原蛋白進行交聯已如前述,此說則設想胞內大分子如核酸、蛋白質也會進行交聯,但迄今在體內還未見證實。把交聯視為衰老的原發性因素也只是一種推測,然而這畢竟是研究衰老中值得探索的一個途徑。
(四)衰老的免疫學說
衰老的免疫學說可以分為兩種觀點:第一,免疫功能的衰老是造成機體衰老的原因;第二,自身免疫學說,認為與自身抗體有關的自身免疫在導致衰老的過程中起著決定性的作用。衰老並非是細胞死亡和脫落的被動過程,而是最為積極地自身破壞過程。從衰老的免疫學說可以看出免疫功能的強弱似乎與個體的壽命息息相關,迄今的研究表明機體在衰老的過程中確實伴有免疫功能的重要改變:1、個體水平伴隨衰老免疫功能改變的特點是對外源性抗原的免疫應答降低,而對自身抗原免疫應答增強。據報告,用抗原免疫後,老年人抗體效價比年輕人呈現有意義下降。此外隨衰老自身抗體的檢出率升高。細胞免疫也隨增齡而降低。2、器官、組織水平人類的胸腺出生後隨著年齡的增長逐漸變大,1314歲時達到頂峰,之後開始萎縮,功能退化,25歲以後明顯縮小。新生動物切除胸腺後即喪失免疫功能,年輕動物切除胸腺後,免疫功能逐漸衰退,抗體形成及移植物抗宿主反應下降。3、細胞、分子水平老年動物和人的t細胞功能下降,數量也減少。隨年齡的增長,機體對有絲分裂原刀豆蛋白a、植物血凝素及抗cd3抗體的增殖反應能力下降。這是衰老的免疫學特徵之一。伴隨老化,細胞因子的分泌有明顯的改變。在t細胞的增殖中il2的產生和il2受體的出現是很重要的,老年人il2產生減少,il2受體,特別是高親和性受體的出現亦減少。自身免疫觀點認為免疫系統任何水平上的失控都可以導致自身免疫反應的過高表達,也從而表現出許多衰老加速的證據。免疫系統控制衰老也有許多相反的證據。小鼠中有一種長命的近交品系—c57bl6,它的抗核抗體的比例及胸腺細胞毒抗體的含量相對較高,但未顯示較高程度的免疫病理損傷。裸鼠是一種先天性無胸腺無毛綜合症的小鼠,其t細胞免疫功能極度缺乏,以至於可以接受同種異體甚至異種移植物,這種小鼠如果飼養在普通條件下可致早期死亡,但是在無菌條件下飼養其壽命不低於正常鼠。如果在通常的飼養條件下切除新生小鼠的胸腺,死於3月齡左右,若將其置於無菌的環境中,大多數可以活得更長久。可見免疫系統雖然對生存期可以產生影響,但並非決定因素。免疫學說將免疫系統說成是衰老的領步者及根本原因所在,然而至今尚無明顯的理由說明免疫系統隨齡退化的原因,免疫系統的增齡改變也均是衰老導致的多種效應的表現,應該視為整體衰老的一部分,而不是衰老的始動原因。
(五)端粒學說
端粒學說由olovnikov提出,認為細胞在每次分裂過程中都會由於dna聚合酶功能障礙而不能完全複製它們的染色體,因此最後複製dna序列可能會丟失,最終造成細胞衰老死亡。端粒是真核生物染色體末端由許多簡單重複序列和相關蛋白組成的複合結構,具有維持染色體結構完整性和解決其末端複製難題的作用。端粒酶是一種逆轉錄酶,由rna和蛋白質組成,是以自身rna為模板,合成端粒重複序列,加到新合成dna鏈末端。在人體內端粒酶出現在大多數的胚胎組織、生殖細胞、炎性細胞、組織的增生細胞以及腫瘤細胞中。正因如此,細胞每有絲分裂一次,就有一段端粒序列丟失,當端粒長度縮短到一定程度,會使細胞停止分裂,導致衰老與死亡。大量實驗說明端粒、端粒酶活性與細胞衰老及永生有著一定的聯繫。第一個提供衰老細胞中端粒縮短的直接證據是來自對體外培養成纖維細胞的觀察,通過對不同年齡供體成纖維細胞端粒長度與年齡及有絲分裂能力的關係觀察到隨著增齡,端粒的長度逐漸變短,有絲分裂的能力明顯漸漸變弱;hastie發現結腸端粒限制性片段的長度隨供體年齡增加逐漸縮短,平均每年丟失33bp的重複序列;植物中不完整的染色體在受精作用中得以修復,而不能在已經分化的組織中修復,這在較為高等的真核生物中也證實了體細胞中端粒酶的活性受抑制;精子的端粒要比體細胞長,體細胞缺失端粒酶活性就會逐漸衰老,而生殖細胞系的端粒卻可以維持其長度;轉化細胞能夠通過端粒酶的活性完全複製端粒以得永生。端粒學說
但是許多問題用端粒學說還不能解釋。體細胞端粒長度與有絲分裂能力呈正比,這一點實驗已經證實了,而不同的體細胞其有絲分裂能力是不盡相同的,胃腸黏膜細胞的分裂增殖速度就比較快,神經細胞分裂的速度就比較慢。曾有人就不同年齡供體角膜內皮細胞的端粒長度進行研究發現角膜內皮細胞內端粒長度長期維持在一個較高的水平,而端粒酶卻不表達。另現,鼠的端粒比人類長近510倍,壽命卻比人類短的多。這些都提示體細胞端粒長度與個體的壽命及不同組織器官的預期壽命並非一致。生殖細胞的端粒酶活性長期維持較高的水平卻不會象腫瘤那樣無限制分裂繁殖;端粒長度由端粒酶控制,那何種因素控制端粒酶呢?生殖細胞內端粒酶活性較高,為什麼體細胞中沒有較高的端粒酶活性。看來端粒的長度縮短是衰老的原因還是結果尚需進一步研究。