第553頁
二號隊友深以為然的點點頭,「數論這方面我並不是很擅長,可能會稍微麻煩點,但丹頓師兄主攻的是數論方向,這個問題應該信手拈來,程諾你呢?」
「我?」程諾指了指自己,笑了一下,「我還好吧。」
兩人以為程諾並不擅長這類的問題,也就笑了笑,沒有再繼續討論下去。
上一局是程諾為他們劍橋大學掙到了臉面,那這次他們兩個帶程諾躺一局又有何妨。
素數是否有無窮多個?
這個問題乍聽會覺得很荒謬。
素數的定義是除去1和本身之外不存在其他因子的大於1的正整數,單純從這個定義上來看,素數沒什麼先驗的理由必須有無窮多個。
但數學是一門很將道理的學科,必須要嚴謹的證明過程將「素數有無窮多個」這個命題證明出來。
第四百四十四章 素數無限的證法
關於「素數有無窮多個」的證明方法,目前最被認可的是數學家歐里幾得在《幾何原本》第9卷的第20個命題列出的證明過程。
因此,這一命題也因此被稱為了「歐幾里德定理」。
歐里幾得的證法很簡單,也很平凡,因此得以進入初等數學的課堂。
他首先是假設素數是有限的,假設素數只有有限的n個,最大的一個素數是p。
然後設q為所有素數之積加上1,那麼,q=(2×3×5×…×p)+1不是素數,那麼,q可以被2、3、…、p中的數整除。
而q被這2、3、…、p中任意一個整除都會餘1,與之矛盾。所以,素數是無限的。
這個古老而又簡便的證明法,即便時隔兩千多年,都無法否認它的強大。
……
「我覺得既然是比數量的話,那我們最好就在歐里幾得的證明法的基礎上進行變種,這樣浪費的時間估計會少一點。」
「嗯,我也這麼覺得,畢竟我們只有半個小時的時間,我們三個至少每個人要想出來一個變種才有獲勝的希望。」
「不不不,三個絕對不夠,其他學校也不都是一些無能之輩,我覺得要爭前三的話,起碼五個更穩妥!我們最多用二十分鐘的時間各自想出一個變種,然後我們三人最後十分鐘再合力看看還有沒有什麼其他的思路。」
「好吧,那就這樣。」
兩位隊友在激烈的討論著。在達成了一致意見後,便齊齊扭頭看向程諾。
「程諾,你沒問題吧?」雖然時間緊迫,但兩人還是想問一下程諾的意見。
「呃……有一句話,我不知道當講不當講。」程諾撓撓頭道。
兩人一愣,回道,「但說無妨。」
「我們為什麼非要琢磨歐里幾得證明法的變種,而不去尋找新的方向進行證明呢?」程諾問道。
程諾的話把兩人問的啞口無言。
他們又何嘗不想去尋找另一個證明素數無窮命題的新方向。
但這是在比賽,不是在搞研究。
而衡量的標準是數量,也並非是質量。
在歐里幾得證明法的基礎上進行變種,就像於是站立在巨人的肩膀上,無論是研究難度,還是研究時間,都會大大縮減。
而尋找另一種證明方向,說起來簡單,但那可是一個從無到有的過程,艱辛無比。並且失敗的可能性極高。
兩人沒有那勇氣,也沒有那信心嘗試去做那個開拓者。
隊友苦笑,「不是我們不想,而實在是我們沒有那底氣說有那實力去做。就算我們三人合力,半小時的時間也未必能找到一個新的方向去證明素數無窮命題。」
程諾聳聳肩,笑道,「不啊,我現在腦子裡就有許多新想法。」
兩人默默對視一眼,皆是懷疑程諾話語的真實性。
一人狐疑的問道,「程諾同學,那能不能隨便給我們舉幾個栗子?」
程諾往篝火中心挪了挪,換了個舒服的坐姿,慢悠悠的開口,「當然沒問題。」
程諾豎起了一根手指,「第一個,利用互素序列進行證明。」
兩人也很好奇程諾究竟會說些什麼,豎起耳朵傾聽。
「你們想一下,假如能找到一個無窮序列,其中任意兩項都是互素的,即所謂互素序列,那就等於證明了素數有無窮多個——因為每一項的素因子都彼此不同,項數無窮,素因子的個數、從而素數的個數,自然也就無窮。」
「那什麼樣的序列既是無窮序列又是互素序列?」一人忍不住問道。
程諾打了響指,笑呵呵的開口說道,「其實這個序列你們應該都聽說過,數學家哥德巴赫在給數學家歐拉的一封信中,提到了一個完全由費馬數:Fn=2^2^n+1(n=0,1,...)組成的序列這個概念,通過Fn-2=F0F1···Fn-1這個公式,可以證明費馬數之間是彼此互素的。」
「以上,利用費馬數組成的序列,就可以輕鬆得到素數無限的一個證明法。」程諾語氣停頓了一下,開口說道,「下面我說第二個。」
「等一下!」一位隊友大聲叫停了程諾,急忙從背後的書包里拿出一摞草稿紙,將程諾提出的第一個證明法記下以後,才不好意思的對程諾說道,「你繼續吧。」
他這麼大聲,自然引起了旁邊許多學校的注意。
於是當眾人看到劍橋大學這邊兩位天資橫溢的博士生,此時卻宛若小學生一般,仰著頭期待著那邊程諾講話,皆是一臉的疑惑之色。